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Similarity operators are shown to relate the lattice vectors and origins of the structure and the 
superstructure, the symmetry operators of the space group G of the structure to those of the subgroup 
H of G of the superstructure, and finally those atomic positions which are conserved in the superstruc- 
ture. In the monoclinic and orthorhombic fluorite-related structures of compositon KO+* Ln0.s+xF2+2r 
(Ln = lanthanide and Y) considered here we find that the cation sublattice is conserved. The origin of 
the superstructure does not necessarily coincide with the origin of the structure, but is a point of high 
site symmetry. 8 1988 Academic Press, Inc 

Introduction 

In a preceding paper (I), fluoride com- 
pounds of the family KoJ-~ LTZ~.~+~F~+~ (Ln 
= lanthanide and Y) were discussed and 
relations between the cell vectors of the flu- 
orite cell and various supercells were ob- 
tained from high-resolution electron dif- 
fraction diagrams. 

Using similarity operators we shall show 
that these vectorial relations between cells 
and supercells impose strong constraints on 
possible centerings and symmetry elements 
and thus on the space groups possible for 
fluorite-related structures. 

Similarity Operators 

Generalities 

Similarity operators have been designed 
first for deriving equivalent or isomorphic 

* This paper is dedicated to Professor J. B. Good- 
enough on his 65th anniversary. 

subgroups of a space group G, e.g., groups 
which conserve the Hermann-Mauguin 
symbol of G (2, 3). 

Their use has been extended by one of us 
to the study of displacive transitions, e.g., 
transitions from a space group G to a sub- 
group H (4) which is no longer isomorphic. 

In the present paper we apply similarity 
operators for relating a so-called super- 
structure to a given structure type for 
which we have chosen the fluorite type. 

In part I we consider monoclinic and 
orthorhombic superlattices and in part II te- 
tragonal and rhombohedral superlattices. 

Definitions and Notations 

We shall state the main properties with- 
out the proofs, which are given in the refer- 
ences (2-4). We use a structure described 
in a reference frame (0, a, b, c) and belong- 
ing to a space group G, the fluorite struc- 
ture. 0 is the origin, a, b, c the vectors of 
the unit cell. Here G = Fm3m. 

On the other hand, we have a so-called 
0022-45%/88 $3.00 
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If R is a point specified by the coordinate 
triplet (Eq. (5)) in the reference frame of G, 
then by definition, the action of a on R 
results in a new point R’ given by Eq. (6): 

“superstructure,” described in a reference 
frame (0’) a’, b’ , c’) and belonging to a 
space group H which is a subgroup of G. 
(The name of “superstructure” and of “su- 
perlattice” is rather unfortunate, substruc- 
ture and sublattices would be more conven- 
ient for designing a structure which belongs 
to H and which has a translation group y, 
subgroup of the translation group I of G.) 
The origins 0 and 0’ may coincide, but in 
general do not. 

X 

R= Y [I (5) 

Z 

Between the cell vectors one has a rela- 
tion 

x 
r0= Y II Z 

(5’) 
(a’, b’, c’) = (a, b, c) S, (1) R’ = czxR = IXR + 7,. (6) 

We are now prepared for two particularly 
important relations. The first one relates 
the point R (Eq. (5)), expressed in the refer- 
ence frame (0, a, b, c) of G, to the same 
point ro (Eq. (5’)), expressed in the refer- 
ence frame (0’, a’, b’, c’) of H: 

where S is a 3 x 3 matrix; (a’, b’, c’) and 
(a, b, c) are row matrices 3 x 1. The relation 
(1) is not particularly new. It is found in the 
literature (see, for instance, (I)) but written 
for the cell vectors in column matrices. We 
shall however stick to the convention (1) 
not only because it has been adopted in the 
new “International Tables” (5) but mainly 
because column vectors will be used in the 
following for another purpose, that of find- 
ing centerings and coordinate triplets. We 
shall denote the origin separation 00’ by a 
coordinate triplet T. 

Here Xof , Yof , Zol , are the coordinates of 
the origin 0’ in the reference frame of G. 
By definition, the operator 9’ shall be called 
the similarity operator: 

L=kl 

9 = (S(T). 

a/= (c+J. 

R = Yro = Sro + T. (7) 

Inversely one has 

r. = S-‘(R - T). (7’) 

The second important equation relates a 
symmetry operator a expressed in the ref- 
erence frame (0, a, b, c) of G to the same 

(2) symmetry operator & expressed in the ref- 
erence frame (0’, a’, b’, c’) of H under the 
condition that it is conserved in the sub- 
group H (see below): 

c&f = Y&T. (8) 

Here one has (cf. Eq. (4)) 

(3) &= (PIT& (4’) 

Splitting the rotational and translational 
parts of Eq. (S), one obtains the relation 
(Eq. (8’)) between the matrices (Y, p, and S 
and the relation (Eq. (8”)) between the 
translation T,, 7@, and T: 

IAS = Sp or p = S-M (8’) 

(4) 7a = SQ + (1 - a)T. (8”) 

It is important to state here that the simi- 
larity operator Y has the same structure as 
the symmetry operator. Let a be a sym- 
metry operator of G. Here a! is a 3 x 3 
matrix (the “rotational” part) and T, the 
translational part, written as a column ma- 
trix: 
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Here 1 is the matrix unity. For pure 
translations one has (Y = 1 and Eq. (8”) re- 
duces to 

To1 = SQ. (9) 

Finally we calculate the relation between 
reciprocal lattice vectors: 

b*l ra*l 

a’* 

S b’* 

[I Cl* 

a* 
ZZ [I b* 

C” 

or 

WV 

The procedure is then as follows. From 
relation (10) in reciprocal space, from the 
diffraction pattern, one gets the matrices 
S-r and S and thus the relation (Eq. (1)) 
between the cell vectors in direct space. 

Knowing the centering translations 7, in 
G, relation (9) will tell us what centerings 
76, if any, are possible in the “superlat- 
tice,” e.g., in subgroup H. 

From the knowledge of the matrices (I! of 
the crystal class of G, we compute the ma- 
trices /3 by means of relation (8’)) 3 matrix /3 
is “allowed” in subgroup H if its coeffi- 
cients pij are + 1, - 1, or 0. The study of 
relation (8”) specifies possible choices of 
the origin 0’ and of the fractional transla- 
tions ra (for more details see Refs. (2-4)). 

Finally we synthesize the resulting infor- 
mation in the indication of possible space 
groups and atomic positions. 

The a-Matrices 

The fluorite structure belongs to the crys- 
tal class m3m. Instead of printing the 48 
matrices of the point group, we only recall 
their general structure. 

There are diagonal matrices: 

El * * 

I I 
cq= * E2 * . (11) 

L. - QJ 

Trivial cases are the identity operator 1 
with E~ = c2 = c3 = t-1 and the inversion 
operator 3 with &j = - 1 (j = 1, 2, 3). 
The nontrivial matrices (Y~ correspond ei- 
ther to twofold rotations around the coordi- 
nate axes or to mirrors perpendicular to 
them. The next matrices to be considered 
have only one diagonal element: &I * . 

(Y&l = * * &2 ; I. 1 -53 * 

r 
. . -3 1 

(Y&2 = * E2 . ; I J E3 * * 

El * 

r 1 

CY2.3 = &2 ’ ’ . 

(12) 

According to the signs of the sj, they rep- 
resent diagonal mirrors or diagonal twofold 
rotations or fourfold rotations. Finally we 
have matrices which have no diagonal ele- 
ment at all and represent threefold rota- 
tions: . . 

El 1 1 cx3,] = &2 * * ; 

(13) 

Monoclinic Phases 

KHo2F7. We illustrate the procedure in 
the example of KHo2F7 (I). All reflections 
could be indexed in a reciprocal lattice a’*, 
b’*, c’* related to the reciprocal lattice vec- 
tors a*, b*, c* of the fluorite cell by the 
following relations (I): 
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a’* = $a*; b’* = $(b* + c*); 

c’* = &(a* - b* + c*). (14) 

From Eq. (10) one has at once the matrix 
S-*. The matrix S is obtained either by solv- 
ing the system above with respect to a*, b*, 
c* or by inverting S-l: 4 00 

s-1 = [ 0 1 a 4 ) B i4 -3 
20 0 

S= [ -f I 1 1 

-1 1 $ 

We now insert into relation (9) centering 
translations 0, :, 4; j&O, 3; f, 4, 0; 4, &, & for T~ 
and examine whether they give rise to pos- 
sible lattice translations 7,. One finds 

0 s * = [I f f s ; = [I 0 

0 

- 1 4 

. f 

-1 

1 ; 

-0 1 
f 1 

; s [I 0 = 

4 

11 -+ ; 

++I t 1 

s f = 4, [I [I i 4 

(16) 

so that the only centering allowed in H is 
the C-centering (0, 0, 0; i, t, 0). 

The relations between cell vectors in di- 
rect space (cf. Eq. (1)) and angles become The P-Matrices 

a’ = 2a f b - c; b’ = b + c; The evaluation of the matrices S-laS ac- 

c’ = g-b + c) (14’) 
cording to Eq. (8’) is rather automatic. We 
only give one example. One has, for in- 

(y’ = 7’ = 90”; p’ = 125”. stance, 

[ 

El 0 0 

p2.1 = S-&S = H-E2 + E3) H&2 + E3) P(E2 - E3) . 

!42E1 + E2 + E3) g-&2 + &3) -&2 + E3) 1 (17) 

The fact that the matrix coefficients can only be 0, + 1, and - 1 implies that ~2 = ~3 and 
&2 = -el so that &I - * 

[ 1 
El * * 

P2.1 = * -q * in H is the image of (Y~,~ = . -El 
. . El -q * 

Thus one is left with a mirror operation for aI = + 1: 

1 in G. (17’) 

p= 1 . -1 . 1 and/or a twofold rotation /3 = for .a1 = -1. (17”) 

. . 1 

For the sake of concision we only state evaluation of S-U with the matrices CY~,~, 
the results. The evaluation of S-t(urS gives 
rise to the trivial /3 matrices 1 and i. The 

(~2.3, (~3.1, and (~3,2 gives rise to matrices with 
fractional coefficients so that the corre- 
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sponding symmetry operations of G are not 
conserved in H. 

Choice of the Origin 

The discussion is based on Eq. (8”). One 
has, for (Y = m, a diagonal mirror: . . . 

l-a= . 1 1 i 1 (18) 

. 1 1 

and 

. Cl87 

Case 7, =0, J, i. The equations are still 
satisfied for TV = 0, 0,O and &4,0 with T’ = 
f. Thus one may choose Yo, = Zof = 4. 

Finally, we are left with the choice be- 
tween space groups C2, Cm, and C2fm and 
two possible origins 0’. 

In fact, the structure itself has already 
been established in space group Cm (6) and 
belongs to the so-called cz-KErZF, type 
which is also encountered for the heavy 
rare earths Ho, Dy, Tb. The comparison 
shows that all cation positions are con- 
served and that 0’ is in 0, b, 4. 

The 8 K ions are on the mirror m in four 
Wyckoff positions 2a (x, 0, z) of Cm. 

Of 16 Ho ions, 4 are on the mirror m in 
two positions 2a and 12 are accommodated 

Here we have abbreviated 

T’ = Yo, + Z,, . 

in three positions 4b (x, y, z; x, -y, z). 
Note that atoms on the mirror m have 

(18”) coordinates XYZ in the reference frame (0, 

Finally, the three components of r, (Eq. a, b, c) such that Y + Z = b. 

(8”)) are 
The correspondence between the ideal 

positions in H and in G is given by: 
(Ta), = 2(7/3)x 

(T& = CT& + (q)y - &p)z + T’ (19) 

(7,)~ = -(Q), + (T& + %p)z + T’. 
In principle, the matrix 

1 * * 

a2,1=m= * * -1 [. 1 -1 * 

can be associated with the translations rol = 
0, 0, 0; 0, 3, $; 8, 0, t; f, 4, 0. In fact, the 
translations $, 0, 3 and 4, f, 0 can be dis- 
carded for TV because they imply (T& = a 
which is not admissible (4 only occurs in 
cubic groups (d planes)). Thus, we are left 
with the discussion of (m)T,) for TV = 0, 0,O 
and TV = 0, 4, 3 which both are true mirror 
operations. 

It is noteworthy to mention that of 56 F 
ions in the unit cell, 32 conserve their posi- 
tions (atoms (1) to (6), (8) to (lo), (17) to 
(19) in (6)) and 24 are significantly displaced 
(atoms (7) and (11) to (16)). 

KLnZF7. Paper (1) also reports a com- 
pound of the same composition KLnzF7, 
called “phase B,” where Ln is a light rare 
earth Pr, Nd, Sm, Eu, Gd. The reciprocal 
lattice relations are 

-Case 7, = 0, 0, 0 (module integer). The 
equations are satisfied for TP = 0, 0,O and as 

a,* = h(5a* + 4(b* _ c*)) 3 
well for Tp = B, a, 0 with T’ = 0. In this case, b’” = &(b* + c”), 
the origins 0 and 0’ may coincide. c’* = &2a* - (b* - c*)). 

(21) 
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The S matrix is 

20 4 

s= [ 1 2 1 -8 . (22) 

-2 1 f 

The direct lattice relations are 

a’ = 2(a + b - c), b’ = (b + c), 
c’ = 4a + 3(-b + c), (21’) 

and one finds (Y’ = y’ = 90”, cos p’ = 
-2/(3fi), say PL = 96.2”, the observed 
value being p& = 97.42”. 

We leave it as an exercise to the reader to 
show that the only symmetry element 
which is conserved is a mirror and/or a 
twofold rotation axis as in the case dis- 
cussed above and that the only space 
groups to be discussed are Cm, C2, and 
C2/m. There is no doubt that the use of 
similarity operators will speed up the eluci- 
dation of the structure. 

Orthorhombic Phases 

Finally we present the procedure for the 
compound K0.+xGd0.5+xF2+b with 2x = 
0.47, e.g., K0.265Gd0.735F2.47 called “phase 
A” in paper (I). 

The reciprocal lattice relations are (I) 

a’* = $a*, b’* = i(b* + c*), 

c’” = 4(-b* + c*). (23) 

The matrices S-r and S are found to be % 00 s-1 = 0 [ 1 4 t , 0 -Q Q 
20 0 

s= 0 1 -4 [ 1 (24) 

01 4 
so that 

a’ = 2a, b’ = b + c, 
c’ = 4(-b + c). (23’) 

All centerings A, B, C, F, and I are com- 
patible with relation (9), the experiment (1) 
showing that the translation group is defi- 
nitely Z (h + k + 1 = 2n). 

The matrices (Y which have images p are 
such that -1 . . 

i 1 a,=/31= * 1 * = m, (25) 

1 . . 

/3= . -1 * =m,, (26) [ 1 . . 1 

1. * 

p= * 1 * =m,. (27) [ 1 . . -1 

The highest symmetry group which can be 
inferred is Immm. 

The structure analysis given in another 
paper (7) has shown that all cation positions 
are near to the ideal positions given by 

r-0 = s-‘(R - T). 

Here T = 0, 0, & is the coordinate triplet of 
the origin 0’ of the superstructure in the 
reference frame (0, a, b, c) of the fluorite 
structure. For instance, for the cation at R 
= 0, 0, 0, one has r. = 0, -a, -&. The 
formula corresponding to the unit cell turns 
out to be K17Gd47F158, e.g., M~Frxg, so that 
there are 30 excess F anions. 

The Gd cations are ordered in the follow- 
ing positions of space group Zmmm: four 
positions 8e *(O, y, z) with yj - i(j = 1, 2, 



562 BERTAUT, LE FUR, AND ALeONARD 

3, 4), ZI - Is; z2 - 65, z3 - A, z4 - A; 
positions 8m ‘(x, 0, z) with x - a, z - I; 
and positions 4e k(x, 0, 0) with x - a. The 
K cations are ordered in 8m k(x, 0, z) with 
x - t, z - b and 4f 4(,x, f, 0) with x - 4. 
Finally there is one mixed site 8m k(x, 0, z) 
withx-t,z- a, occupied by 3 Gd and 5 K 
atoms. 

Remark on the Origin of the 
Superstructure 

Our study has shown that the origin 0’ of 
the superstructure has coordinates 0, t, 4 in 
the case of KHozF7 and coordinates 0, 0, t, 
or equivalently 8, 4, 3 in the case of K0.ze5 
G&.735F2.47 with respect to the fluorite refer- 
ence frame. A glance at the International 
Tables (5) shows that in space group 
Fm3m, the point 0, f, f under 4d has point 
symmetry mmm and the point ?;, 4, t under 
4b has (the highest) point symmetry m3m. 
In both cases we have positions which are 
unoccupied in the fluorite structure, but 
which have a high point symmetry. 

In the superstructure the point 0’ is not 
occupied in KHoZF7 while in the ortho- 
rhombic compound K0.26SGd0.735F2.47, 0’ is 
an F ion at the center of a cuboctahedron of 

F ions rather often encountered in the liter- 
ature and mentioned in Ref. (7). 

Conclusions 

What we want to emphasize finally is that 
in the fluorite superstructures above, the 
cation lattice stays nearly invariant and that 
the origin 0’ of the superstructure does not 
necessarily coincide with the origin of the 
fluorite structure, but coincides with a point 
of high site symmetry. 
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